
1208 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vOL. MTT-34, NO. 11, NOVEMBER 1986

Low-Frequency Characteristic Modes for
Aperture Coupling Problems

YEHUDA LEVIATAN, MEMBER, IEEE

Abstract —In this paper, a recently suggested general procedure which

leads to an eigenvahre eqnation for apertnre problems is specialized to the

range of frequencies for which the maximnm linear dimension of the

aperture [ is much smaller than the wavelengths, known as the Rayleigh

region. As kl asymptotically approaches zero, we arrive at a set of two

eigenvahre equations which aided by the edge condition, constitutes an

alternative set of equations for a derivation of the quasi-static distributions

characterizing the apcrtore.

I. INTRODUCTION

M ODAL SOLUTIONS have long been used for the

analysis and synthesis of radiating systems. The

most familiar case is when the regions of the source and

the field coincide with coordinate surfaces in which the

Helmholtz equation is separable. For bodies of arbitrary

shape, similar modes can be defined. In these cases, the

modal solutions are eigenvectors of a generalized or

weighted eigenvalue equation. Garbacz [1] approached the

problem by diagonalizing the scattering matrix of the

body, and his results for wire objects are given in [2].

Barrington and Mautz [3] dealt with the problem by

diagonalizing the generalized impedance matrix of the

body, and their results for wire objects as well as bodies of

revolution are given in [4]. Barrington et al. [5] subse-

quently extended the formulation to encompass dielectric,

magnetic, and both dielectric and magnetic bodies. Other

related work includes that of Inagaki and Garbacz [6] and

Eftimiu and Huddleston [7]. Inagaki and Garbacz ex-

tended Parseval’s relation and arrived at an eigenvalue

equation for which the eigensources and corresponding

eigenfields are complete and orthogonal over the source

and field regions, respectively. Then they applied the the-

ory to arrays and to a two-dimensional aperture problem.

Eftimiu and Huddleston developed a useful approximate

analytic expression for both eigenvalues and eigenvectors

for the case of a long finite circular cylinder. Recently,

Barrington and Mautz [8] suggested a procedure similar to

that of [3] which leads to an eigenvalue equation for

equivalent magnetic currents in three-dimensional aperture

problems.

The coupling of electromagnetic energy through an

aperture in a conducting wall is an important problem in

the theory of electromagnetic compatibility and inter-
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ference. A model used in recent years is that of two regions

separated by an infinitely thin, perfectly conducting wall

in which an aperture is cut. The method of solution is

briefly as follows. The equivalence principle is used to

divide the original problem into two parts; this is done by

replacing the aperture by a perfect conductor and provid-

ing for the tangential electric field originally present in the

aperture by attaching postulated magnetic current sheets

to both sides of the aperture. Continuity of the tangential

magnetic field across the aperture gives an integral equa-

tion for the unknown magnetic current. To solve the

integral equation via the method of moments, the un-

known magnetic current is expressed as a linear combina-

tion of a selected set of expansion vector functions. This

linear combination is then substituted into the integral

equation, which in turn is tested with each element of a set

of testing functions. Obviously, the success and simplicity

of the moment solution depend, often crucially, on a

suitable choice of both expansion and testing functions. In

this context, the eigenfunctions yielded by the eigenvalue

equation possess the following desirable properties. They

are equiphasal and can be chosen real; they are orthogonal

in some sense over the aperture region; and their radiation

fields are Hermitian orthogonal over the sphere at infinity.

Hence, using these functions can unquestionably render

moment solutions for aperture problems very simple. This

assured simplification would come of course at the expense

of the indirect step of determining the eigencurrents. How-

ever, it is expected that for electrically small apertures,

only a few modes, which can be ordered according to their

relative importance, are required for accurate solutions.

In this paper, we specialize the procedure of [8] to the

Rayleigh region, i.e., the range of frequencies for which the

maximum linear dimension of the aperture is much smaller

than the wavelength. The eigenvalue equation is first

ordered in ascending powers of kl, where k is the wave-

number and 1 is the maximum linear dimension of the

aperture. Then, we allow kl to approach zero, thereby

obtaining two low-frequency eigenvalue equations which,

aided by the edge condition, constitute an alternative set of

equations for the derivation of the quasi-static distribu-

tions characterizing the aperture. Specifically, the two ei-

gencurrents of the first low-frequency eigenvalue equation

give rise, by means of the equation of continuity, to the

two quasi-static magnetic charge densities, while the

solenoidal eigencurrent of the second eigenvalue equation

is the actual quasi-static magnetic current.
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Fig. 1. Two half-space regions coupled through an electrically small

aperture.
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II. CHARACTERISTIC MODES FOR APERTURE REGION

A model for aperture coupling problems is that of two

regions, called region a and region b, separated by an

infinitely thin, perfectly conducting wall in which an aper-

ture A is cut. The geometry is shown in Fig. 1. A corre-

sponding cross section is shown in Fig. 2. Regions a and b
are filled with contrasting homogeneous media with con-

stitutive parameters (p., c.) and (p~, c~). The excitation is

due to known sources ( Jia, M’a) and (Jib, M’b) with

exp ( jut ) time dependence in regions a and b, respec-

tively. The method of solution is briefly as follows. The

equivalence principle is used to divide the situation in the

original problem into two equivalent ones, as shown in

Figs. 3 and 4. We close the aperture with a perfect conduc-

tor and provide for the tangential electric field originally

present in the aperture region by attaching postulated

magnetic current sheets – J4 just to the left of the aper-

ture and &l just to the right of the aperture, both radiating

with the aperture closed. Here

M=Exh (1)

where ii is a unit vector normal to A and pointing toward
region b, and E is the electric field in the aperture in the

original problem. The use of – M in region a and ikf in

region b ensures continuity of the tangential component of

the electric field across the aperture. Continuity of the

tangential component of the magnetic field H across the

aperture leads to the operator equations for the problem.

rCOMPLETE SCREEN

Fig. 3. Equivalence for region a.
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Fig. 4. Equivalence for region b.

The result is

– H~(M)– H~(M) =Hjb– H:a, in A. (2)

Here, Hp(ikf) and H ‘p denote, respectively, the magnetic

field due to ill and due to the impressed sources radiating

in region p, p = a, b, with the aperture shorted. The sub-

script t denotes components tangential to A. Equation (2)

is first solved for the equivalent magnetic current M and

then the fields in each region can be readily computed.

An operator for the equivalent magnetic current can

thus be defined in accordance with (2) as

Y(M) = –H:(M)– H~(M), in A. [3)

Further, we define the inner product of two vector fur~c-

tions B and Con xl to be the integral of their dot product

over the aperture region, i.e.,

(B, C) = //B. Cds’. (4)
A

Due to reciprocity, the operator H:(M), p = a, b, is sym-

metric, i.e.,

@/’(~l),@ = (~,>H~(~z)) (5)

and it follows from linearity that Y(M) is a symmet tic

operator as well. On the other hand, H/’(M), p = a, b, is

not a Herrnitian operator since in general

(llf(lll),Jf,) # (M1, H/’*(M,)) (6)

where the asterisk denotes Gomplex conjugate. Conse-

quently, Y is not Hermitian. With a view toward obtaining

Hermitian operators, we split Y into its real and imaginfllry

parts as follows:

Y= G+jB (7)

where

G=~(Y+Y*)=–H:~–H~~, inA (8)

B= L(Y– Y*)=– H&H~,
2j

in A (9)



1210 IEEE TRANSACTIONS ON MICROWAVS THEORY AND TECHNIQUES, VOL. MTT-34, NO. 11, NOVEMBER 1986

with H~~ and HA denoting, respectively, the real and

imaginary parts of H:. Evidently, the operators G and B
are real and symmetric and thus Hermitian as well. Fur-

thermore, G is positive semidefinite since it is a sum of

two positive semidefinite operators, – Hf~ and – Ht~.
That each H:~ is positive semidefinite follows from the

fact that the power supplied to region p by the magnetic

current ~ attached to A with the aperture closed, given by

pJ’ = –Re(M*, Hf(M)) = –(ilf*, H&(iW)) (10)

is greater than or equal to zero. If no resonator fields exist

in either region a or b, i.e., the magnetic currents radiate

some power, however small, in either region a or b, then in

that region PP is strictly greater than zero and it follows

that G is positive definite.

Next consider the eigenvalue equation

Y(Mn) = lJnT(Mn) (11)

where v~ are eigenvalues, ikf~ are eigenfunctions, and T is
a weight operator to be chosen. It should be noted that any

choice of symmetric T will diagonalize Y. However, for

reasons of analytical and conceptual simplicity, T = G is
chosen. Further, we set Y = G + jB and v. = 1 + j~ ~ in

(11) and cancel the common term. The result is

B(Mn) = AnG(iWn). (12)

Equation (12) constitutes a new weighted eigenvalue equa-

tion with A. eigenvalues and ill. eigencurrents. In view of

the Hermitian property of B and G and the positive

definiteness of G, it follows that all eigenvalues must be

real and that all eigencurrents are equiphasal over the

aperture region and thus can be chosen to be real.

The characteristic currents lf~ must also obey the usual

orthogonalities and furthermore can be normalized such

that

(iW~,G(&fJ)=l. (13)

With this choice, the orthogonality relationships become

(iW., G(iW~)) =(iW;,G(iW~)) = tl~~ (14)

(M~, B(Mn))=(M:, B(Mn))=An8~n (15)

(Mm, Y(Mn))=(M:, Y(A4n))= (l+~An)8mn (16)

where i!l~~ is the Kronecker delta (O if m # n and 1 if

m = n).

The use of the eigencurrents ilf~ as both expansion and

testing functions in a method of moments solution of (2)

will result in a modal solution for M in A as

M=~I;(l+jAn)’lMn (17)
n

where l; are the modal excitation coefficients given by

(I;= Mn, (H: b–H;a )) (18)

The fields are linearly related to the currents, and hence

can also be expressed in modal form, Explicitly, these

forms are

(19)Ef’ = ~I;(l+ jAn)-lE:

n

(20)Hp= ~1~(1+ jAn)-lH~
n

where Ep and Hp are the fields from J4 and E: and H:
are the fields produced by ill., all radiating in region p in

the presence of the complete screen.

III. SPECIALIZATION TO SMALL APERTURES

The magnetic field just to the left and just to the right of

the shorted aperture due to the magnetic current ill and

its associated charge density m (m = – (1/jw)V” M) is

given by

illexp ( – jkPlr – ~’1) ~~,

HP(M) =: J/
277p–r’l

V’.Afexp(– jkplr – r’1) ~~,
+ &v ~j

27rlr-r’l
7

p=a, b. (21)

Here, r is the position vector of the point in the aperture

region at which HP(A4) is evaluated, r’ is the vector to the

source point in the aperture region, v denotes the gradient

operator, V‘” denotes the divergence operator in the

primed system, ds’ is the differential element of area at r’,

kp = u= is the wavenumber in region p, and qp

={= is the i t“n nnsic impedance of the medium in

region p. In the Rayleigh region, i.e., the range of frequen-

cies for which the aperture is electrically small, we expand

the exp ( – jkplr – r’1) term in (21) in a Taylor series about

kp Ir – r’1 = O. Using this expansion in (21) and recalling

that the eigencurrents are equiphasal over A and can be

taken a priori to be real, we decompose H~(M) into its

real and imaginary parts as follows:

Hf’(M) =H~(M)+ jHf(~) (22)

where H:(M) and H;(M) are given by the series

+ O((kpz)’), (kpl) -+ O, in A (23)

(kpl) [-2M+(r-r’)v’.M] d.,

JJ+ 47771p A llr – r’1

+ o((kp~)3), (kpl) ~0, in A. (24)

In (23) and (24), 1 denotes the maximum linear dimension

of A. We introduce 1 to allow the definition of kpl as a

dimensionless small parameter and thereby as a means of

ordering the terms according to relative magnitude. Note

that the process of obtaining (22)–(24) from (21) involves a

few algebraic steps which use several vector identities in
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conjunction with the fact that on the contour bounding A,

the component of ill normal to the contour is zero since

no line charge can accumulate there. These steps are

omitted for the sake of brevity. An interested reader would

fill them in with no appreciable difficulty. In the limit

kPl ~ 0, (23) and (24) are approximated by the first term
of their series. We have,

k;
H{(M) - –—

/.
iWds’, in A

3r~p A
(25)

V’*M
H:(M) - – — ds’,

1 ql,-r’l2~qPkp
in A (26)

provided that M is not a solenoidal function, in which

case the right-hand sides of both (25) and (26) are identi-

cally zero. If M is a solenoidal function, then in the limit
kPl - t), (23) and (24) become

H{(M) - – A ~~ ~ds’, in A.
27771PA Ir–rl

(28)

Furthermore, referring to the analysis of the low-frequency

portion of the Rayleigh region discussed in [9], we recall

that the equivalent magnetic current can be completely

described by means of a linear combination of three vector

functions tangent to A, denoted by &fl, M2, and Ms. The

vector functions Ml and M2 can give rise, by means of the

equation of continuity (w = – v oM/ju ), to two scalar

functions that can span the quasi-static magnetic charge

densities which would result in the aperture region under a

quasi-static impressed magnetic field. The third function

M3 is a divergenceless vector function that on its own can

span the quasi-static magnetic current which would result

in the aperture re~on under a quasi-static impressed elec-

tric field. Hence, it follows that (25) and (26) are associ-

ated with Ml and M2, while (27) and (28) are associated

with M3.

We can now turn back to the eigenvalue equation (12).

Expressing each magnetic field in terms of its real and

imaginary parts, given by (25) and (26), we reduce (12) to

=An//(r–r’)v’.ds d,’, n=l,2, inA. (29)
A

Equation (29) is an eigenvalue equation with, respectively,

LI and X z eigenvalues and Ml and Ml, eigencurrents. As

constructed, it constitutes an alternative equation for the

derivation of the current distributions Ml and M2 which

can give rise to two scalar functions that can span the

quasi-static magnetic charge densities in the aperture re-

gion. Similarly, expressing each magnetic field in terms of

its real and imaginary parts, given by (27) and (28), we

= A3f/M31r– r’~2ds’, in A (:)0)
A

Equation (30) is an eigenvalue equation with A ~ eigenvalue

and M3 eigencurrent. As constructed, it constitutes an

alternative equation for the derivation of the quasi-static

current distribution in the aperture region. Notice that IWl,

M2, and M3 must obey_ the edge condition as one ap-

proaches the contour bounding the aperture. Specifically,

near the edge, the component of each M. normal to the

contour bounding A is of the order 81/2, where 8 is the

distance from the edge, while the component of each Af.

tangential to the contour bounding A possesses a singullar-

it y of the order ~ – 1/2. In addition, M3 should be a

divergenceless vector function.

IV. AN EXAMPLE

As an example, consider a small circular aperture of

radius PO in a plane conducting screen. The small circullar

aperture is suitable for our purposes since its quasi-static

aperture distributions are analytically derivable and widely

used [10]–[12]. In the following discussion, we will demcm-

strate that the quasi-static distributions are indeed solut-

ions of the low-frequency eigenvalue equations (29) and

(30).

For the circular aperhu-e, due to symmetry, the eigtm-

value equation (29) has one eigenvalue whose algebraic

multiplicity y is 2. The geometric multiplicity of this eigen-

value, i.e., the number of independent eigenvectors for this

eigenvalue, is also 2; hence, any linear combination of two

independent eigenvectors would also be an eigenvector.

Here, we consider the following Ml and M2, though any

linear combination of them could be adequate as well.
These two current distributions give rise, by means of the

equation of continuity, to two respective quasi-static charge

densities in the aperture region. In terms of cylindrical

coordinates, the p and cp components of Ml are given lby

ikflP(p, ff)=al(p~- p2)1’2cosfp (:31)

[
MI.(P)9) = –al (l%– P2)1’2+ ‘2 1sin q

2(p: – p’)1’2

(32)

and the corresponding components of iW2 are given by

J.f2P(p, cp) =a2(pj–p2)1’2sinfp (33)

[
~2,(P>9) =a’ (P3– P2)1’2+ ‘2

1

Cosq .
2(P: – P’)’i’

(34)

Finally, the p and q components of the solenoidal quasi-
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static current A43 are given by

M3P = o (35)

(36)

The parameters al, a ~, and a ~ are real constants taken for

normalization purposes to be

al = l/rp~ (37)

az = l/Tp~ (38)

(39)

Having specified the functional form of each of the

magnetic currents Ikll and M2, we now return to the

eigenvalue equation (29). It can be readily evaluated ana-

lytically that

JJMlds’=iix, inA.
A

(40)

Furthermore, using the technique on page 168 of [10], we

find that

V’*M1 77
—-ds’=hx$=iiz— in A (41)–v~j [~–~’l ~ am,’

where i2X is a unit vector in the x direction and

is an eigenvalue of the magnetic polarizability tensor of the

aperture. Hence, (29) is readily satisfied by Ml of (31) and

(32) with eigenvalue

3~(%~a + ‘@b)
A,=– (43)

%%(%k; + %kj) am~ “

Similarly, we have

Jf
Mzds’=i2y, inA (44)

A

and

V’*M2 $7
—ds’=ti ‘=il—,

–q 1~–~q y 4p:
in A (45)

am~

where fiY is a unit vector in the y direction and

lxm~ = aml. (46)

Hence, (29) is also satisfied by M2 of (33) and (34) with

eigenvalue

A2=A1. (47)

Finally, if the media in both regions are the same, say

c~= c., p~=pa, then Al and A2 become

9T
A2=A1=– —

8k;p; “
(48)

Next, we consider M3 given by (35) and (36) and its

corresponding eigenvalue equation (30). It can be readily

established analytically that

and, using the technique on p. 168 of [10], that

//

M3 77
—ds’=$piv=— A

~ Ir - Iq ~ 2a, pu7°
in A. (50)

Here, fiv is a unit vector in the q direction and

~e = $P: (51)

is the electric polarizability of the aperture. It then follows

that Mq given by (35) and (36) satisfies (30) with eigen-

value

3r(k~q~ + k~v.)
A3=

)“2(khb + Kh. ~e

Finally, if the media in both regions are

c~ = c., p~ = pa, then (52) reduces to

971
A3=—

4k;p~ “

(52)

the same, say

(53)

Note that in the case of an aperture with two identical

media, A3 = – 2AI.

V. CONCLUSIONS

A recently formulated eigenvalue equation for aperture

problems has been specialized to the range of frequencies

for which the maximum linear dimension of the aperture is

much smaller than the wavelength. The result is a set of

two eigenvalue equations which, aided by the edge condi-

tion on the contour bounding the aperture, constitutes an

alternative set of equations for a derivation of the quasi-

static distributions characterizing the aperture. Finally, the

circular aperture case has been chosen to exemplify that

the quasi-static solutions are indeed solutions of these

low-frequency eigenvalue equations.
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