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Low-Frequency Characteristic Modes for
Aperture Coupling Problems

YEHUDA LEVIATAN, MEMBER, IEEE

Abstract —In this paper, a recently suggested general procedure which
leads to an eigenvalue equation for aperture problems is specialized to the
range of frequencies for which the maximum linear dimension of the
aperture / is much smaller than the wavelengths, known as the Rayleigh
region. As k/ asymptotically approaches zero, we arrive at a set of two
eigenvalue equations which, aided by the edge condition, constitutes an
alternative set of equations for a derivation of the quasi-static distributions
characterizing the aperture.

I. INTRODUCTION

ODAL SOLUTIONS have long been used for the
analysis and synthesis of radiating systems. The
most familiar case is when the regions of the source and
the field coincide with coordinate surfaces in which the
Helmbholtz equation is separable. For bodies of arbitrary
shape, similar modes can be defined. In these cases, the
modal solutions are eigenvectors of a generalized or
weighted eigenvalue equation. Garbacz [1] approached the
problem by diagonalizing the scattering matrix of the
body, and his results for wire objects are given in [2].
Harrington and Mautz [3] dealt with the problem by
diagonalizing the generalized impedance matrix of the
body, and their results for wire objects as well as bodies of
revolution are given in [4]. Harrington efal. [5] subse-
quently extended the formulation to encompass dielectric,
magnetic, and both dielectric and magnetic bodies. Other
related work includes that of Inagaki and Garbacz [6] and
Eftimiu and Huddleston [7]. Inagaki and Garbacz ex-
tended Parseval’s relation and arrived at an eigenvalue
equation for which the eigensources and corresponding
eigenfields are complete and orthogonal over the source
and field regions, respectively. Then they applied the the-
ory to arrays and to a two-dimensional aperture problem.
Eftimiu and Huddleston developed a useful approximate
analytic expression for both eigenvalues and eigenvectors
for the case of a long finite circular cylinder. Recently,
Harrington and Mautz [8] suggested a procedure similar to
that of [3] which leads to an eigenvalue equation for
equivalent magnetic currents in three-dimensional aperture
problems.
The coupling of electromagnetic energy through an
aperture in a conducting wall is an important problem in
the theory of electromagnetic compatibility and inter-
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ference. A model used in recent years is that of two regions
separated by an infinitely thin, perfectly conducting wall
in which an aperture is cut. The method of solution is
briefly as follows. The equivalence principle is used to
divide the original problem into two parts; this is done by
replacing the aperture by a perfect conductor and provid-
ing for the tangential electric field originally present in the
aperture by attaching postulated magnetic current sheets
to both sides of the aperture. Continuity of the tangential
magnetic field across the aperture gives an integral equa-
tion for the unknown magnetic current. To solve the
integral equation via the method of moments, the un-
known magnetic current is expressed as a linear combina-
tion of a selected set of expansion vector functions. This
linear combination is then substituted into the integral
equation, which in turn is tested with each element of a set
of testing functions. Obviously, the success and simplicity
of the moment solution depend, often crucially, on a
suitable choice of both expansion and testing functions. In
this context, the eigenfunctions yielded by the eigenvalue
equation possess the following desirable properties. They
are equiphasal and can be chosen real; they are orthogonal
in some sense over the aperture region; and their radiation
fields are Hermitian orthogonal over the sphere at infinity.
Hence, using these functions can unquestionably render
moment solutions for aperture problems very simple. This
assured simplification would come of course at the expense
of the indirect step of determining the eigencurrents. How-
ever, it is expected that for electrically small apertures,
only a few modes, which can be ordered according to their
relative importance, are required for accurate solutions.

In this paper, we specialize the procedure of (8] to the
Rayleigh region, i.e., the range of frequencies for which the
maximum linear dimension of the aperture is much smaller
than the wavelength. The eigenvalue equation is first
ordered in ascending powers of k/, where k is the wave-
number and / is the maximum linear dimension of the
aperture. Then, we allow k/ to approach zero, thereby
obtaining two low-frequency eigenvalue equations which,
aided by the edge condition, constitute an alternative set of
equations for the derivation of the quasi-static distribu-
tions characterizing the aperture. Specifically, the two ei-
gencurrents of the first low-frequency eigenvalue equation
give rise, by means of the equation of continuity, to the
two quasi-static magnetic charge densities, while the
solenoidal eigencurrent of the second eigenvalue equation
is the actual quasi-static magnetic current.
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Fig. 2. Original situafion.

II. CHARACTERISTIC MODES FOR APERTURE REGION

A model for aperture coupling problems is that of two
regions, called region @ and region b, separated by an
infinitely thin, perfectly conducting wall in which an aper-
ture 4 is cut. The geometry is shown in Fig. 1. A corre-
sponding cross section is shown in Fig. 2. Regions a and b
are filled with contrasting homogeneous media with con-
stitutive parameters (., €,) and (p,, €,). The excitation is
due to known sources (J* M') and (J°, M**) with
exp(jwt) time dependence in regions a and b, respec-
tively. The method of solution is briefly as follows. The
equivalence principle is used to divide the situation in the
original problem into two equivalent ones, as shown in
Figs. 3 and 4. We close the aperture with a perfect conduc-
tor and provide for the tangential electric field originally
present in the aperture region by attaching postulated
magnetic current sheets — M just to the left of the aper-
ture and M just to the right of the aperture, both radiating
with the aperture closed. Here

M=EXh (1)

where 7 is a unit vector normal to 4 and pointing toward
region b, and E 1s the electric field in the aperture in the
original problem. The use of — M in region ¢ and M in
region b ensures continuity of the tangential component of
the electric field across the aperture. Continuity of the
tangential component of the magnetic field H across the
aperture leads to the operator equations for the problem.
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Fig. 4. Equivalence for region b.

The result is . ‘
-~ H(M)-H)(M)=H!-H"”, in A. (2)
Here, H?(M) and H P denote, respectively, the magnetic
field due to M and due to the impressed sources radiating
in region p,p = a, b, with the aperture shorted. The sub-
script ¢ denotes components tangential to 4. Equation (2)
is first solved for the equivalent magnetic current M and
then the fields in each region can be readily computed.
An operator for the equivalent magnetic current can
thus be defined in accordance with (2) as

Y(M)=—-HM)-H)M), in A. (3)

Further, we define the inner product of two vector func-
tions B and C on A4 to be the integral of their dot product
over the aperture region, i.e.,

(B.Cy= [[B-Cas". (4)
A

Due to reciprocity, the operator H?(M), p = a, b, is sym-
metric, i.e., ‘

(HP (M), M,) =(M,, H} (M,)) (5)
and it follows from linearity that ¥(M) is a symmetric

operator as well. On the other hand, H?(M), p=a,b, is
not a Hermitian operator since in general

(HP (M), My) # (M, H?*(M,)) (6)

where the asterisk denotes complex conjugate. Conse-
quently, Y is not Hermitian. With a view toward obtaining
Hermitian operators, we split ¥ into its real and imaginary
parts as follows:

(7)

(8)
(©)

Y=G+ jB
where
G=§(Y+ Y*) = —-H,"R—H,’;U in 4

1
B=—(Y-Y*)=—H4{—H}, in4
2j
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with H% and Hj denoting, respectively, the real and
imaginary parts of HY. Evidently, the operators G and B
are real and symmetric and thus Hermitian as well. Fur-
thermore, G is positive semidefinite since it is a sum of
two positive semidefinite operators, — H% and — Hj%.
That each Hj is positive semidefinite follows from the
fact that the power supplied to region p by the magnetic
current M attached to A with the aperture closed, given by

PP = —Re(M*, By (M)) =~ (M* Hz(M)) (10)

is greater than or equal to zero. If no resonator fields exist
in either region a or b, i.c., the magnetic currents radiate
some power, however small, in either region a or b, then in
that region P? is strictly greater than zero and it follows
that G is positive definite.

Next consider the eigenvalue equation

Y(M,)=»T(M,) (11)

where », are eigenvalues, M, are eigenfunctions, and T is
a weight operator to be chosen. It should be noted that any
choice of symmetric T will diagonalize ¥. However, for
reasons of analytical and conceptual simplicity, T =G is
chosen. Further, we set Y=G + jB and »,=1+ jA, in
(11) and cancel the common term. The result is

B(M,)=)\,G(M,). (12)

Equation (12) constitutes a new weighted eigenvalue equa-
tion with A, eigenvalues and M, eigencurrents. In view of
the Hermitian property of B and G and the positive
definiteness of G, it follows that all eigenvalues must be
real and that all eigencurrents are equiphasal over the
aperture region and thus can be chosen to be real.

The characteristic currents M, must also obey the usual
orthogonalities and furthermore can be normalized such
that

(M¥,G(M,))=1. (13)

With this choice, the orthogonality relationships become
(M,.G(M,))=(M},G(M,))=5,, (14)
(M,,, B(M,)) =M}, B(M,))=\,3,, (15)
(M, Y(M,))=(M},Y(M,))= 1+ jA,)8,, (16)

where &, is the Kronecker delta (0 if m#n and 1 if
m=n).

The use of the eigencurrents M, as both expansion and
testing funciions in a method of moments solution of (2)
will result in a modal solution for M in A4 as

M=YIL(1+ jA,) 7'M, (17)
where I are the modal excitation coefficients given by
Li=(M,,(H* - H/)). (18)

The fields are linearly related to the currents, and hence
can also be expressed in modal form, Explicitly, these
forms are

Er =Y Ii(1+ jA,) 'E? (19)
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(20)

where E? and H? are the fields from M and E7 and H?
are the fields produced by M,, all radiating in region p in
the presence of the complete screen.

III. SPECIALIZATION TO SMALL APERTURES

The magnetic field just to the left and just to the right of
the shorted aperture due to the magnetic current M and
its associated charge density m (m=—(1/jw)vV-M) is
given by

HP =Y 11+ jA,) ' HY
n

ff Mexp(— jkplr—r’|) &

kP
H?(M)=—2
Jp

2nlr—r
1 V"Mexp(— Jk,lr =) p
A
jkpnp 2ar—r'|
p=a,b. (21)

Here, r is the position vector of the point in the aperture
region at which H?(M) is evaluated, r’ is the vector to the
source point in the aperture region, v denotes the gradient
operator, V’- denotes the divergence operator in the
primed system, ds’ is the differential element of area at r/,
k,= wm is the wavenumber in region p, and 7,
=k, /€, is the intrinsic impedance of the medium in
region p. In the Rayleigh region, i.e., the range of frequen-
cies for which the aperture is electrically small, we expand
the exp(— jk,|r — r’]) term in (21) in a Taylor series about
k,|r—r’|=0. Using this expansion in (21) and recalling
that the eigencurrents are equiphasal over 4 and can be
taken a priori to be real, we decompose H?(M) into its
real and imaginary parts as follows:

H?(M)=Hg(M)+ jH{(M)
where HEZ(M) and H{’ (M) are given by the series

RGN 2

(22)

HE (M) = - ff * S
P et
+o((k 1), (k1)—0, in4 (23)
, vM
H{(M) = p(k l) ff |r—r|

(k )

477171,

oo, (o

In (23) and (24), ! denotes the maximum linear dimension
of 4. We introduce / to allow the definition of &,/ as a
dimensionless small parameter and thereby as a means of
ordering the terms according to relative magnitude. Note
that the process of obtaining (22)~(24) from (21) involves a
few algebraic steps which use several vector identities in

[-2M +(r—r)v’'-M]
ff ds’
llr—r'
in A4.

) =0, (24)
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conjunction with the fact that on the contour bounding A4,
the component of M normal to the contour is zero since
no line charge can accumulate there. These steps are
omitted for the sake of brevity. An interested reader would
fill them in with no appreciable difficulty. In the limit
k,l—0, (23) and (24) are approximated by the first term
of their series. We have,

H{;(M)~— TP fMds, in A (25)
I4 .
v -M
HI(M) ~ - ds', inA (26
I( ) 2wnkaV£f |r_rl| s, 10 ( )

provided that M is not a solenoidal function, in which
case the right-hand sides of both (25) and (26) are identi-
cally zero. If M is a solenoidal function, then in the limit
k,I— 0, (23) and (24) become

inA

(27)

»
1277np it

M
.({f 7 ds’,

Furthermore, referring to the analysis of the low-frequency
portion of the Rayleigh region discussed in [9], we recall
that the equivalent magnetic current can be completely
described by means of a linear combination of three vector
functions tangent to 4, denoted by M;, M,, and M,. The
vector functions M, and M, can give rise, by means of the
equation of continuity (m=—-v-M/jw), to two scalar
functions that can span the quasi-static magnetic charge
densities which would result in the aperture region under a
quasi-static impressed magnetic field. The third function
M, is a divergenceless vector function that on its own can
span the quasi-static magnetic current which would result
in the aperture region under a quasi-static impressed elec-
tric field. Hence, it follows that (25) and (26) are associ-
ated with M, and M,, while (27) and (28) are associated
with M.

We can now turn back to the elgenvalue equation (12).
Expressing each magnetic field in terms of its real and
imaginary parts, given by (25) and (26), we reduce (12) to

3('kana+kbnb) foV
2kakb(nak§+'nbk§) e

=, f/ (r—r)v’'-M,ds’,
A

Equation (29) is an eigenvalue equation with, respectively,
A, and A, eigenvalues and M, and M,, eigencurrents. As
constructed, it constitutes an alternative equation for the
derivation of the current distributions M, and M, which
can give rise to two scalar functions that can span the
quasi-static magnetic charge densities in the aperture re-
gion. Similarly, expressing each magnetic field in terms of
its real and imaginary parts, given by (27) and (28), we

H)(M) ~ - ind. (28)

27,

n=1,2, in 4. (29)
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reduce (12) to
_ 6(ka'qb +kyn,)
kam, + kin,

[l

=X [[Mylr—r2ds, in 4. (30)
A

Equation (30) is an eigenvalue equation with A ; eigenvalue
and M, eigencurrent. As constructed, it constitutes an
alternative equation for the derivation of the quasi-static
current distribution in the aperture region. Notice that M,
M,, and M, must obey the edge condition as one ap-
proaches the contour bounding the aperture. Specifically,
near the edge, the component of each M, normal to the
contour bounding A4 is of the order 8!/2, where § is the
distance from the edge, while the component of each M,
tangential to the contour bounding A4 possesses a singular-
ity of the order § 2 In addition, M, should be a
divergenceless vector function.

IV. AN EXAMPLE

As an example, consider a small circular aperture of
radius p, in a plane conducting screen. The small circular
aperture is suitable for our purposes since its quasi-static
aperture distributions are analytically derivable and widely
used [10]-[12]. In the following discussion, we will demon-
strate that the quasi-static distributions are indeed solu-
tions of the low-frequency eigenvalue equations (29) and
(30).

For the circular aperture, due to symmetry, the eigen-
value equation (29) has one eigenvalue whose algebraic
multiplicity is 2. The geometric multiplicity of this eigen-
value, i.e., the number of independent eigenvectors for tlis
eigenvalue, is also 2; hence, any linear combination of two
independent eigenvectors would also be an eigenvector.
Here, we consider the following M, and M,, though any
linear combination of them could be adequate as well.
These two current distributions give rise, by means of the
equation of continuity, to two respective quasi-static charge
densities in the aperture region. In terms of cylindrical
coordinates, the p and ¢ components of M, are given by

My, (p.9) = a(g2—p*)cosg (31)

1/2 P2
27, :
) 2(93—92)1/2]&%
(32)

and the corresponding components of M, are given by

(33)

M, (p,9)=—a; [(Pﬁ —p

12 .,
M,,(p,p)=a,(p2—p*)" sing

1/2 P2
) + W cos Q.
(34)

Finally, the p and ¢ components of the solenoidal quasi-

My, (e, 9) =az[(pi—p2



1212

static current M, are given by

M,,=0 (35)

(36)

-
9 (p2 _p2)1/2 .
(4]

The parameters a,, a,, and a4 are real constants taken for
normalization purposes to be

M,

ay=1/mp, (37)
a,=1/mp; (38)
ay=3/2mp.. (39)

Having specified the functional form of each of the
magnetic currents M; and M,, we now return to the
eigenvalue equation (29). It can be readily evaluated ana-

lytically that
J[mas=a,
A

Furthermore, using the technique on page 168 of [10], we
find that

—fo ds —uxj%; ﬁxa—w—

ml

in 4. (40)

, ind4 (41)

where i is a unit vector in the x direction and

(42)
is an eigenvalue of the magnetic polarizability tensor of the

aperture. Hence, (29) is readily satisfied by M, of (31) and
(32) with eigenvalue

A1 =3 po

A= — 3‘77("7aka+"lbkb) (43)
Y 2k key(mok? + k)
Similarly, we have
J[m,as=a,, in 4 (44)
A
and
3 T )
ﬁy4—0i = ﬁya—mz’ in A (45)
where 4, is a unit vector in the y direction and
0y =Q,. (46)

Hence, (29) is also satisfied by M, of (33) and (34) with
eigenvalue

(47)

Finally, if the media in both regions are the same, say

€,=¢€,, I, =W, then A; and A, become
97
A=A =— e (48)

Next, we consider M, given by (35) and (36) and its
corresponding eigenvalue equation (30). It can be readily
established analytically that
ffM3|r —r'2ds’= —2pi,
A

in 4 (49)
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and, using the technique on p. 168 of [10], that

37 T
ff |r—r| 43p o 2a,

fi, is a unit vector in the ¢ direction and

in 4. (50)

~—pi,,
Here, i

a,=3p; (51)
is the electric polarizability of the aperture. It then follows
that M, given by (35) and (36) satisfies (30) with eigen-
value

3m(kny, + kyn, ) (52)
37 (k4nb+kbn )

Finally, if the media in both regions are the same, say

€, =€,, U, =M, then (52) reduces to
Ay= ) 53
37 l apo ( )

Note that in the case of an aperture with two identical
media, Ay = —2A;.

V. CONCLUSIONS

A recently formulated eigenvalue equation for aperture
problems has been specialized to the range of frequencies
for which the maximum linear dimension of the aperture is
much smaller than the wavelength. The result is a set of
two eigenvalue equations which, aided by the edge condi-
tion on the contour bounding the aperture, constitutes an
alternative set of equations for a derivation of the quasi-
static distributions characterizing the aperture. Finally, the
circular aperture case has been chosen to exemplify that
the quasi-static solutions are indeed solutions of these
low-frequency eigenvalue equations.
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